Adaptive Sensor-Driven Neural Control for Learning in Walking Machines
نویسندگان
چکیده
Wild rodents learn the danger-predicting meaning of predator bird calls through the paring of cues which are an aversive stimulus (immediate danger signal or unconditioned stimulus, US) and the acoustic stimulus (predator signal or conditioned stimulus, CS). This learning is a form of pavlovian conditioning. In analogy, in this article a setup is described where adaptive sensor-driven neural control is used to simulate biologically-inspired acoustic predator-recognition learning for a safe escape on a six-legged walking machine. As a result, the controller allows the walking machine to learn the association of a predictive acoustic signal (predator signal, CS) and a reflex infrared signal (immediate danger signal, US). Such that after learning the machine performs fast walking behavior when “hearing” an approaching predator from behind leading to safely escape from the attack.
منابع مشابه
Neural Control for Locomotion of Walking Machines
The basic locomotion and rhythm of stepping in walking animals like cockroaches mostly relies on a central pattern generator (CPG) [1], while their peripheral sensors are used to control walking behaviors [2]. By contrast, in stick insects, sensory feedback serving as reflexive mechanism plays a critical role in shaping the motor pattern for adaptivity and robustness of walking gaits [2]. Inspi...
متن کاملNeuroethological Concepts and Their Transfer to Walking Machines Neuroethological Concepts and Their Transfer to Walking Machines
A systems approach to animal motor behavior reveals concepts that can be useful for the pragmatic design of walking machines. This is because the relation of animal behavior to its underlying nervous control algorithms bears many parallels to the relation of machine function to electronic control. Here, three major neuroethological concepts of motor behavior are described in terms of a conceptu...
متن کاملModular Reactive Neurocontrol for Biologically Inspired Walking Machines
A neurocontroller is described which generates the basic locomotion and controls the sensor-driven behavior ofa four-legged and a sixlegged walking machine. The controller utilizes discrete-time neurodynamics, and is ofmodular structure. One module isfor processing sensor signals, one is a neural oscillator network serving as a central pattern generator, and the third one is a so-called velocit...
متن کاملSensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines
متن کامل
Neuroethological Concepts and Their Transfer to Walking Machines
A systems approach to animal motor behavior reveals concepts that can be useful for the pragmatic design of walking machines. This is because the relation of animal behavior to its underlying nervous control algorithms bears many parallels to the relation of machine function to electronic control. Here, three major neuroethological concepts of motor behavior are described in terms of a conceptu...
متن کامل